Open Access Research

Relatively lower body mass index is associated with an excess of severe truncal asymmetry in healthy adolescents: Do white adipose tissue, leptin, hypothalamus and sympathetic nervous system influence truncal growth asymmetry?

Theodoros B Grivas12*, R Geoffrey Burwell3, Constantinos Mihas1, Elias S Vasiliadis1, Georgios Triantafyllopoulos1 and Angelos Kaspiris1

Author Affiliations

1 Department of Trauma and Orthopaedics, Scoliosis Clinic, "Thriasio" General Hospital – NHS, G. Gennimata Av. 19600, Magoula, Attica, Greece

2 Department of Trauma and Orthopaedics, "Tzanio" General Hospital – NHS, Tzani & Afendouli str, 18536, Piraeus, Greece

3 Centre for Spinal Studies & Surgery, Nottingham University Hospitals Trust, Queen's Medical Centre Campus, Nottingham NG7 2UH, UK

For all author emails, please log on.

Scoliosis 2009, 4:13  doi:10.1186/1748-7161-4-13

Published: 30 June 2009



In healthy adolescents normal back shape asymmetry, here termed truncal asymmetry (TA), is evaluated by higher and lower subsets of BMI. The study was initiated after research on girls with adolescent idiopathic scoliosis (AIS) showed that higher and lower BMI subsets discriminated patterns of skeletal maturation and asymmetry unexplained by existing theories of pathogenesis leading to a new interpretation which has therapeutic implications (double neuro-osseous theory).


5953 adolescents age 11–17 years (boys 2939, girls 3014) were examined in a school screening program in two standard positions, standing forward bending (FB) and sitting FB. The sitting FB position is thought to reveal intrinsic TA free from back humps induced by any leg-length inequality. TA was measured in both positions using a Pruijs scoliometer as angle of trunk inclinations (ATIs) across the back at each of three spinal regions, thoracic, thoracolumbar and lumbar. Abnormality of ATIs was defined as being outside 2 standard deviations for each age group, gender, position and spinal region, and termed severe TA.


In the sitting FB position after correcting for age,relatively lower BMIs are statistically associated with a greater number of severe TAs than with relatively higher BMIs in both girls (thoracolumbar region) and boys (thoracolumbar and lumbar regions).

The relative frequency of severe TAs is significantly higher in girls than boys for each of the right thoracic (56.76%) and thoracolumbar (58.82%) regions (p = 0.006, 0.006, respectively). After correcting for age, smaller BMIs are associated with more severe TAs in boys and girls.


BMI is a surrogate measure for body fat and circulating leptin levels. The finding that girls with relatively lower BMI have significantly later menarche, and a significant excess of TAs, suggests a relation to energy homeostasis through the hypothalamus. The hypothesis we suggest for the pathogenesis of severe TA in girls and boys has the same mechanism as that proposed recently for AIS girls, namely: severe TAs are initiated by a genetically-determined selectively increased hypothalamic sensitivity (up-regulation, i.e. increased sensitivity) to leptin with asymmetry as an adverse response to stress (hormesis), mediated bilaterally mainly to the growing trunk via the sympathetic nervous system (leptin-hypothalamic-sympathetic nervous system (LHS) concept). The putative autonomic dysfunction is thought to be increased by any lower circulating leptin levels associated with relatively lower BMIs. Sympathetic nervous system activation with asymmetry leads to asymmetries in ribs and/or vertebrae producing severe TA when beyond the capacity of postural mechanisms of the somatic nervous system to control the shape distortion of the trunk. A test of this hypothesis testing skin sympathetic responses, as in the Rett syndrome, is suggested.